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This paper is an attempt to predict aeroelastic #utter of a rotating disk in an unbounded
#uid. In the "rst part of the paper, the linear vibration of a rotating, potential #uid driven by
transverse, harmonic motion of a rotating disk is solved. We extend the existing solution for
a rigid disk to include #exible disks and compare alternative numerical evaluation schemes.
Our principal interest in this problem is the identi"cation of possible physical mechanisms
for aeroelastic #utter. In the forced vibration problem considered here, #uid rotation renders
the governing equations hyperbolic for low-frequency oscillation. As a result, the #uid
motion may be discontinuous along the two characteristics that emanate from the rim of the
disk. These discontinuities suggest the presence of previously unrecognized boundary layers
near the rim of the disk that may be important for aeroelastic #utter. This idea is used to
develop a simple mathematical model for predicting aeroelastic #utter. The model and its
dependence on the dimensionless parameters describing the system are derived from "rst
principles except for the compressible boundary layer, which is described by a simple
function whose magnitude is empirically determined by "tting experimental data. Although
the model is simple, its predictions are quantitatively similar to the experimental evidence
and gives analytic predictions of aeroelastic #utter that are within an order of magnitude of
the experimental values.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Aeroelastic #utter of a rotating disk is an unstable coupling between the disk and the
surrounding air that occurs at high rotation speeds [1}3]. If a thin, uniform, circular disk is
spun in air below the #utter speed, the peak to peak transverse oscillations of the disk are
below or on the order of the thickness of the disk. Above the #utter speed, the disk
undergoes large, #uttering, transverse vibrations whose amplitudes are at least an order of
magnitude greater than the thickness of the disk. The importance of aerodynamic coupling
can be demonstrated by spinning the disk in a partial vacuum. The reduced #uid density
increases the speed at which self-excited oscillations "rst occur.

Presently, for disks in an unbounded #uid, there is poor agreement between experimental
aeroelastic #utter data and the analytical predictions based on classical aeroelasticity [2, 3].
In addition, the experimental evidence indicates that the rim Mach number is important
even though it is small ((0)3) [3]. Classical aeroelasticity predicts that compressibility
22-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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e!ects should be negligible at these Mach numbers. This discrepancy with experimental
results suggests that some physical mechanism essential to aeroelastic #utter is missing from
the classical aeroelasticity models.

Other researchers have proposed models incorporating di!erent forms of rotating
damping [4}6]. This kind of damping frequently occurs in hydrodynamic lubrication
theory when analyzing disks with small transverse clearances such as #oppy disks [7}9].
Hansen et al. [5] and Kim et al. [6] argue that this form of damping can be found in disks
rotating in an unbounded #uid and provide an experimental measurement technique for
predicting aeroelastic #utter based on this idea. However, they do not provide any
theoretical model for predicting #utter.

In contrast to aeroelastic #utter, a great deal is understood about the viscous #ow
induced by a rigid rotating disk [10}12]. The existence of a viscous boundary layer near
a rotating disk has been "rmly established, and its structure in the laminar, turbulent,
and transition regimes has been documented. Many of these studies use disks with
approximately the same diameter and rotation speed as those reported here. It is probable
that proper modelling of the viscous boundary layer is required to derive a "rst principles
model of aeroelastic #utter. However, the connection between the viscous #ow "eld results
and aeroelastic #utter is far from clear. For example, Kohama [12] observed 34 spiral
vortices across an annular region of the disk in the transition region between laminar and
turbulent #ow, while experimental results have observed unstable aeroelastic #utter modes
with only 3 to 4 nodal diameters [2]. This discrepancy suggests that spiral vortices may not
be important to aeroelastic #utter since, in a linear theory, an excitation with an angular
periodicity of 34 cannot excite a mode with an angular periodicity of 3 or 4.

This paper proposes a model for predicting aeroelastic #utter in an unbounded #uid. In
the "rst part of the paper, our aim is to examine a physical mechanism that may be
important for #utter. To do so, we examine a classical #uid dynamics problem: the linear
vibration of a rotating, potential #uid driven by transverse, harmonic motion of a rotating
disk [13]. We extend the known solution for a rigid disk to include motion of a #exible disk.
A closed-form solution in terms of quadratures is derived and alternative numerical
evaluation procedures are compared. The results indicate that low-frequency disk
vibration can cause the #ow "eld to be discontinuous across the characteristics that
emanate from the rim of the disk. These discontinuities suggest the presence of previously
unrecognized boundary layers near the rim of the disk that may be important for aeroelastic
#utter.

We use the idea of a compressible boundary layer near the rim of a rotating disk to
develop a simple predictive model. The model developed here and its dependence on the
dimensionless parameters describing the system are derived from "rst principles except for
the e!ect of the compressible boundary layer, which is described by a simple function whose
magnitude is determined empirically using experimental data collected here and described
in the literature. Although the model is simple, its predictions are within an order of
magnitude of experimental values for a broad range of data. Furthermore, the predictions
are quantitatively similar to the experimental evidence in a number of respects. The model
gives a method for predicting aeroelastic #utter analytically and sets the stage for more
re"ned modelling e!orts.

We note that the proposed model is for predicting aeroelastic #utter, not explaining it.
There are serious defects with the model proposed: it does not tie in the literature on disk
boundary layer #ow; the aerodynamic coupling is "t from experimental data rather than
calculated a priori; and the mathematical modelling is at times ad hoc, especially in
transferring compressibility from the equations describing the #uid to the boundary
conditions coupling the #uid with the plate. These are weaknesses of the model, which the
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authors readily acknowledge. However, despite these broad simpli"cations, the resulting
model gives reasonably accurate predictions.

2. A MOTIVATING EXAMPLE

We begin by examining a classical forced vibration problem whose solution motivates
new modelling strategies for aeroelastic #utter.

A thin, axisymmetric, circular disk of outer radius R
�
spins about its axis of symmetry at

a constant angular speed �. The disk is surrounded by an inviscid, incompressible #uid
undergoing solid body rotation with the disk. The problem is to determine the linear,
harmonic vibration of the #uid when the transverse de#ection of the disk, = (¹,R, �), is
driven at frequency �* such that

="

!i

�*
ei(�*¹$n�)F(R ), (1)

where (R, �) are polar co-ordinates in the rotating frame of reference, i"�!1, ¹ is time,
�*'0, n"0, 1, 2,2, and either the plus or minus sign is chosen. F (R) describes any
physically realizable de#ection (i.e., F (0)"0 for n'0, etc.).

We adopt dimensionless variables (lower case) by normalizing with respect to R
�
and

� and use the cylindrical, rotating co-ordinates (r, �, z). Using symmetry, we restrict the
domain to the quadrant 0)r(R and 0)z(R. The dimensionless, inviscid,
incompressible Navier}Stokes equations written in the rotating frame of reference,
linearized about rigid body rotation are [13]
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where v
�
, v� , v� , and p are the #uid velocities and pressure, and a comma indicates partial

di!erentiation. Continuity requires

v
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�
/r#v���/r#v

���
"0. (5)

The dimensionless boundary conditions for the problem are

v
�
"ei(�t$n�) f (r) on z"0, r(1, p"0 on z"0, r'1. (6, 7)

As r�#z�PR we either require the solution to be bounded or impose a radiation
condition depending on whether the system equations are elliptic or hyperbolic respectively.

The problem is solved by substituting the separable forms
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into equations (24)}(26) and solving for u
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, u� , and u� in terms of �. This gives
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Substitution of equations (9)}(11) into equation (5) then gives the governing equation

� ��!

4

��
�
���

"0 (12)

provided �O2. Equation (12) is elliptic for �'2 and hyperbolic for �(2. (�"2 is the
point at which the convective acceleration of the rotating #uid*the 2�s in equations (2) and
(3)*become &&small'' compared to the forced oscillation.) Boundary conditions (6) and (7)
reduce to

�
��

"f (r) on z"0, r(1, �"0 on z"0, r'1. (13, 14)

Application of the Hankel transform solution technique to equation (12) gives [14]

�"�
!����

�

�

A (u) e!�zuJ
�
(ru) du, �'2, �"(1!4/��)���� ,

����
�

�

A(u) [sin(�zu)#i cos (�zu)]J
�
(ru) du, �(2, �"(4/��!1)��� ,

(15)

whereA(u) is a function to be determined. For �'2, the exponentially decaying solution is
chosen in order to bound the solutions for large r nd z. For �(2, the term exp(!i�zu) is
chosen because it gives wave solutions travelling away from the disk when combined with
exp (i�t$in� ), which satis"es the radiation condition. Boundary conditions (13) and (14)
reduce to the dual integral equations

�
�

�

uA(u)J
�
(ru) du"f (r) for r(1, (16)

�
�

�

A(u) J
�
(ru) du"0 for r'1. (17)

The solution of equations (16) and (17) is given by Sneddon [14]:

A (u)"�
2u

� �
���

�
�

�

s���J
�����

(us) ds �
�

�

(1!�� )�������� f (s�) d� . (18)

When f (r) is a polynomial,A(u) is easily calculated from equation (18) and takes the form
of a sum of integral powers of u multiplied by 1, sin (u) and cos (u). When this result is
substituted into equation (15), however, the in"nite integral is characterized by slowly
decaying oscillations and can be di$cult to accurately calculate numerically. For �'2,
� can be expanded into a sum of integrals of the Weber/Schafheitlin type, and the resulting
integrals can be calculated using the formulas given in Watson [15]. For large z, the
integrals may even be calculated by direct numerical integration.

For �(2, evaluation of � is more di$cult. If the formula for � is expanded directly into
a sum of Weber/Schafheitlin integrals, many of these individual integrals fail to converge
even though the sum converges. For instance, for the rigid disk case n"0 and f"1,

A"(2/�)���u����J
���

(u)"(2/�) [u�� sin (u)!u��cos (u)]. (19)

In this case, the power series expansion about u"0 for each of the terms on the right-hand
side of equation (19) starts with the term u��, whereas the expansion of their sum starts with
u. This problem is even more acute for the derivatives of �.



FLUTTER OF ROTATING DISKS 231
Compounding this di$culty is the fact that � may be discontinuous at particular values
of r and z when �(2. From the form of the Weber/Schafheitlin integrals, we deduce that
� may be discontinuous across the lines

r"$1$�z, (20)

which are the two characteristics of the hyperbolic equation (12) emanating from the rim of
the disk [13].

For the special case in which the disk de#ection takes the form

f (r)"r����, (21)

where p"0, 1, 2,2, formula (18) can be integrated by parts, and A(u) written as a sum of
Bessel functions. For example,
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(u)!4u���J
��	��

(u)#8u�	��J
��
��

(u)], p"2,

(22)

where a
��

are constants. For equation (22), � can be written as the integral of a product of
three Bessel functions. Watson [15, section 13.46, equation (7)] gives a formula for such
integrals. This solution method does not converge on (and close to) the discontinuities.
Greenspan [13] uses the formulas given in Erdelyi [16, in particular, Fourier sine transform
formula (29)]. These formulas only appear to work for p"0.

A more satisfactory and general method of computing � is to reverse the order of
integration. The formula for � is rewritten as

�"2������������
�

�

(1!�� )���� ����d�

��
�

�

s��� f (s�) ds�
�

�

u���[sin (�zu)#i cos (�zu)]J
�����

(us)J
�
(ru) du. (23)

The products of sin (�zu) and cos (�zu) with J
�����

(us) are expanded into a sum of sines and
cosines, and each of these, multiplied by J

�
(ru), is evaluated as a special case of the

Weber/Schafheitlin integral. These integrals always exist. The two "nite integrals are then
integrated using numerical quadrature. This solution method appears to work well for any
physically meaningful f (r). We note, however, that this method only works for evaluating �;
when evaluating its derivatives, the Weber/Schafheitlin integrals do not converge.

Table 1 compares the exact solution for Re[�] to the approximate solutions computed
by reversing the order of integration and the triple Bessel function formula for two special
cases in which the exact solution can be computed using [16]: n"0, f"1, �"1,
Re[�]"z for 0(z(1!r; and n"1, f"r, �"1, Re[�]"rz for 0(z(1!r.
A number of di!erent values of r and z are shown. Both methods work well and have errors
less than 1% in all cases.

Figure 1 show contour plots of the real and imaginary parts of � for f"r� for n"0
computed using the reversed integration method. The discontinuities in � across the
characteristics 1$�z are clearly visible for both the real and imaginary parts of �. The
overall pattern of the contours is similar to the steamlines for the rigid disk case [13]. A few
contour lines are wavy due to errors in the calculation procedure. These errors are small.



TABLE 1

Comparison of calculation methods for �

Reversed integration Triple Bessel function
Exact

r z � � % Error � % Error

Case 1: n"0, f (r)"1, �"1, Re[�]"z for 0(z(1!r
0)1 0)1 0)10 0)10037178 0)37 0)09997366 !0)03
0)1 0)3 0)30 0)30111533 0)37 0)29990030 !0)03
0)1 0)5 0)50 0)50185888 0)37 0)50056211 0)11
0)1 0)7 0)70 0)70260243 0)37 0)69904215 !0)14
0)3 0)1 0)10 0)09935658 !0)64 0)09999508 0)00
0)3 0)3 0)30 0)30111533 0)37 0)30001764 0)01
0)3 0)5 0)50 0)50185888 0)37 0)49963110 !0)07
0)5 0)1 0)10 0)10001674 0)02 0)10001457 0)01
0)5 0)3 0)30 0)30105522 0)35 0)29959208 !0)14
0)7 0)1 0)10 0)09969257 !0)31 0)10022353 0)22

Case 2: n"1, f (r)"r, �"1, Re[�]"rz for 0(z(1!r
0)1 0)1 0)01 0)00997238 !0)28 0)01000863 0)09
0)1 0)3 0)03 0)02991715 !0)28 0)03003920 0)13
0)1 0)5 0)05 0)04986192 !0)28 0)04998550 !0)03
0)1 0)7 0)07 0)06980669 !0)28 0)07031714 0)45
0)3 0)1 0)03 0)02983788 !0)54 0)03001646 0)05
0)3 0)3 0)09 0)08975146 !0)28 0)09008443 0)09
0)3 0)5 0)15 0)14958577 !0)28 0)15039635 0)26
0)5 0)1 0)05 0)04976574 !0)47 0)04992356 !0)15
0)5 0)3 0)15 0)15109641 0)73 0)14978147 !0)15
0)7 0)1 0)07 0)06961352 !0)55 0)07007755 0)11
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3. RELEVANCE TO AEROELASTIC FLUTTER

The problem solved in the previous section is a classical one and the results for the rigid
disk have been known for decades. The extension of these classical results to include #exible
disks and the di!erent evaluation procedures are new contributions of this paper. Our
primary interest, however, is the possible relevance of this problem to the aeroelastic #utter
problem.

Experimental data on di!erent rotating disks undergoing aeroelastic #utter have
indicated that the Mach number of the rim of the disk is an important parameter for
determining the onset of #utter even though the Mach numbers are small [3]. One possible
explanation for the importance of the Mach numbers which is suggested by section 2 is the
existence of compressible boundary layers in the #ow. Such boundary layers could exist in
the neighborhood of discontinuous, incompressible #ow "elds such as those described here.
The problem studied here with its steady, rigid body rotation is similar to the conditions
found near a rim of a rotating disk. Consequently, it is plausible that the #ow "eld near the
rim of an actual rotating disk possesses discontinuous #ow "elds modulated by
compressible boundary layers.

In the problem solved in the previous section, discontinuities only occur for #utter
frequencies less then twice the rotation speed of the disk. Although #utter frequencies are
not reported for all the experimental data in reference [2, 3], three data points can be
determined. For the steel disk reported in reference [2], the ratio of the #utter frequency to



Figure 1. Contour plot of Re[�] (top) and Im[�] (bottom) for n"0 and f (r)"r�. Characteristics emanating
from the disk edge are shown by the - - - - line. Im[�]"0 below the characteristic r"1#�z.
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the rotation speed in two cases is 0)47 and 0)62; for the oak tag disk reported [3], the ratio is
0)24 in one case. The fact that these #utter frequencies are less than two gives circumstantial
support of the relevance of the problem studied in the previous section to aeroelastic
#utter.

4. AEROELASTIC FLUTTER: PHYSICAL MODELLING AND DIMENSIONAL ANALYSIS

We now turn our attention to a predictive model for aeroelastic #utter. At the risk of
confusion, we change to a stationary frame of reference for this analysis, rather than the
co-rotating frame of reference adopted in section 2.

A thin, axisymmetric, circular disk of radius R
�
spins about its axis of symmetry at

a constant angular speed �. The disk is surrounded by an unbounded, compressible #uid of
density 	

�
and acoustic velocity a. Stationary, cylindrical co-ordinates (R, �, Z) are adopted

with the center of the disk at the origin and the unde#ected disk lying in the Z"0 plane.
The disk is rigidly clamped between 0)R)R

	
and unsupported between R

	
)R)R

�
.

The disk is of uniform thickness H, #exural rigidity D, density 	


, and the Poisson ratio 
.

= (¹,R,�) is the transverse displacement of the disk in the positive Z direction where ¹ is
time, �*

�
(R ) and �*� (R) are the in-plane radial and hoop stresses created by rotation, and

Q (¹,R, �) is the transverse load per unit area in the positive Z direction.
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We wish to predict the stability of steady rotation. The linearized equation of the motion
for the disk about the equilibrium="0 written in the stationary frame of reference [17] is

	


H(=

���
#2�=

���#��=
��� )"Q!D� �=#

H

R
(R�*

�
=

��
)
��

#

H

R�
�*�=��� , (24)

where comma indicates partial di!erentiation.
The steady #uid motions are generated by viscous drag on the disk [18]. However, in

order to derive the #ow's dependence on dimensionless parameters, consider the following
thought experiment: suppose that both the steady and perturbed #uid motions can be
modelled using irrotational #ow "elds. Characterize the steady viscous #ow by the #ow "eld
<

�
(R,Z) and model the small, compressible #uid velocity deviations from steady state using

a velocity potential � such that the perturbed #uid velocity < is given by

<"�� . (25)

The velocity potential is then governed by [19]

� ��"

1

a��
�

�¹

#<
�
) ��

�
�. (26)

Equations (24) and (26) are coupled on the disk surface though the #uid pressure

Q"!(P 
Z"0�!P 
Z"0�)"	
�
(�

��

Z"0�!�

��

Z"0� ),	

�
[�

��
]

for R)R
�
, Z"0 (27)

and velocity matching:

=
��

"<
�

for R)R
�
, Z"0. (28)

Symmetries of the problem provide the pressure boundary condition

P"0 for R'R
�
, Z"0. (29)

Dimensionless variables are de"ned by

r"R/R
�
, z"Z/R

�
, t"¹�,

w"=/H, v"</(�H), �"�/(�R
�
H),

q"Q/(	


��H�), �

�
"�*

�
/(	



��R�

�
), ��"�*� /(	


��R�
�
). (30)

With these de"nitions, equation (24) becomes

w
� ��

#2w
� ��#w

���"�[�
� �
]!�� �w#(r�

�
w
� �
)
��
/r#��w���/r� , (31)

equation (26) becomes

� ��"M��
�
�t

#v
�
) ��

�
�, (32)

and equation (28) becomes

�
��

"w
� �
, 0)r)1, z"0, (33)
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with the understanding that w,0 for 0)r)�. Equation (29) becomes

�
� �
"0, r'1, z"0. (34)

The disk satis"es clamped-free boundary conditions:

w"w
��

"0 at r"�, (35)

w
���

#
 (w
� �
/r#w

���/r� )"0 at r"1, (36)

(� �w)
� �

#(1!
) (w
� ���/r�!w

���/r� )"0 at r"1. (37)

The far"eld boundary conditions on � are vanishing #uid velocity as r�#z�PR.
The dimensionless parameters used in equations (31)}(37) are the clamping ratio,

�"R
	
/R

�
, (38)

the ratio of the bending sti!ness of the disk to the sti!ness derived from centrifugal forces,

�"D/	


��HR�

�
, (39)

the #uid/disk density ratio,

�"	
�
R

�
/(	



H ), (40)

and the Mach number of the outer edge of the disk,

M"R
�
�/a. (41)

For a "xed disk geometry and acoustic velocity, the parameter combination �M� remains
constant for all � and 	

�
. For a "xed disk material, acoustic velocity, and 	

�
, the

combination of �M��� remains constant for all R
�
and H.

The in-plane stresses satisfy the generalized plane-stress equations of linear elasticity with
a centrifugal body force, zero in-plane displacement at r"�, and zero traction along r"1
[20]:

�
�
"b

�
/r�#b

�
#b

�
r�, ��"!b

�
/r�#b

�
#b

�
r�, (42)

where

b
�
"

��(1!
) [3#
!(1#
)��]

8[1#
#(1!
)��]
, b

�
"

(1#
) [3#
#(1!
)��]

8[1#
#(1!
)��]
,

b
�
"!(3#
)/8, b

�
"!(1#3
)/8. (43)

5. MATHEMATICAL SIMPLIFICATION

The model presented in the previous section is incomplete because we have not speci"ed
the steady state #ow "eld v

�
nor justi"ed how it can describe a viscosity-driven #ow.

Nevertheless, we use the model as a starting point for developing a simpler mathematical
model. ForM��1 the right-hand side of equation (32) is negligible except in the vicinity of
boundary layers, i.e., the #uid behaves as an incompressible, perfect #uid with M"0.
Experimental results indicate that M is important for predicting aeroelastic #utter even
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though typically M(0)3 [3]. Consequently, we postulate the presence of a compressible
boundary layer near the rim of the disk.

We adopt a simpli"ed, mathematical model for the compressible boundary layer at the
rim of the disk by transferring the e!ects of compressibility from equation (32) to the
boundary conditions. We replace equation (32) with Laplace's equation,

� ��"0, (44)

and boundary condition (33) with

�
��

"w
� �
[1#M�h (r, �)], 0)r)1, z"0, (45)

where h (r, �) is a weighting function describing the strength of the boundary layer by
imposing an arti"cial transverse velocity to the #uid. Since the boundary layer is expected to
be localized near the rim of the disk, h(r, �) is small everywhere except near the rim of the
disk. The explicitM� dependence is retained from the right-hand side of equation (32) while
the dependence on � is simply assumed. Boundary condition (34) remains unchanged.

Our objective here is to develop a simple, predictive model. We plan to determine h (r, � )
by "tting the #utter results of model (45) to known experimental data. With h (r, �) then
"xed, we can then predict aeroelastic #utter for di!erent experimental parameters.

The transfer of compressibility from the #uid equation (32) to the boundary conditions
(45) is, admittedly, ad hoc. However, this transfer has the great advantage of rendering the
resulting problem soluble. This is of paramount importance in our goal of constructing
a predictive model.

6. NUMERICAL SOLUTION

We seek separable solutions of the form

w"u (r) ei�t$in�, �"i��(r) e i�t$in�, (46)

where n"0, 1, 2,2 and either the plus or minus sign is chosen. � is antisymmetric about
z"0 so we need only determine � for z'0 and can replace [�

� �
] by 2i��. The #uid

problem reduces to

� �
�
�"0, (47)

where � �
�
is the Laplacian with n nodal diameters subject to the mixed boundary conditions

�
��

"[1#M�h (r, �)] u (r) for r(1, z"0, (48)

�"0 for r'1, z"0. (49)

Equations (47)}(49) are a classical problem whose solution is given by Sneddon [14]. We
discretize u (r) with the "nite-dimensional approximation

u(r)"


� c

�
f
�
(r), (50)
���
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where the f
�
(r) are linearly independent polynomials satisfying homogenous boundary

conditions (35)}(37) and orthonormal with respect to the inner product

�a, b�"�
�

�
abrdr. (51)

The vibration frequencies � are determined using Galerkin's method, which reduces to the
real, quadratic eigenvalue problem

�� (I!2�P!2�M�D )$2n�I!�K
�
#K�"0, (52)

where the matrices I, P, D, K
�
and K� are de"ned by the inner products

I
	�
"� f

�
, f
	
�"�

	�
, P

	�
"�S[ f

�
], f

	
�, (53, 54)
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�
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�
f
�
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�, (55, 56)

(K�)	�"� (r�
�
f
�� �

)
��
/r!n� (��/r�!1) f

�
, f

	
�, (57)

and the linear operator S[ ) ] is given by [14]

S[ f
�
]"

2r�

� �
�

�

x���dx

(x�!r� )��� �
�

�

s��� f
�
(s) ds

(x�!s� )���
. (58)

Stability requires Im[�]*0. For given n, �, �, andM, a numerical root "nder is used to
determine the lowest value of � at which Im[�](0 "rst occurs. If (�, n) is a solution, then
(!�, !n) is also a solution; therefore, it is su$cient to let n"0, 1, 2,2 The lowest value
over all n gives the stability boundary for the disk/#uid system.

7. EMPIRICAL DATA

The unknown parameter of our model, the boundary layer weighting function h (r, �), is to
be chosen using experimental data. For simplicity, we restrict ourselves to �"0)3. We
divide our data set into two groups. In the "rst group, listed in Table 2, the data is reliable
and the e!ects of enclosures and surfaces close to the rotating disk may be neglected. In the
second group, listed in Table 3, either the data has a large amount of scatter or enclosure
e!ects are signi"cant. Tables 2 and 3 list experimental parameters, #utter speed �

�������
,

number of nodal diameters n, and dimensional #utter frequency �
�������

.
D'Angelo and Mote [2] report #utter measurements for a steel disk in di!erent #uid

pressures. The manner in which the experiments were performed suggests that this data is
accurate and reliable. However, the e!ect of the vacuum chamber on these experiments
appears to be substantial. In these experiments, the radius of the disk is 0)178m, but the
radial clearance with the vacuum chamber is only 2)5 cm. As a result, the #utter speed is
3500 rpm at atmospheric pressure in the absence of any enclosure but only 2800 rpm at
atmospheric pressure when in the vacuum chamber, a reduction of 20%. Using the
apparatus described below, the authors were able to change the measured #utter speed of
a 0)151m radius, aluminium disk by #12% to !12% depending on the disk thickness by
enclosing the disk in a 0)171m radius cylindrical shroud. For our modelling here, we list the
one, unenclosed data point measured by reference [2] as the "rst data point listed in Table 2



TABLE 2

Reliable experimental -utter data for unshrouded disks with �"0)3

R
�

H 	
�

�
�������

�
�������

Datum (m) (mm) (kg/m�) (rpm) n (Hz)

Data for the steel disk reported in reference [2]
1 0)178 0)775 1)09 3500 3 34

Data for the oak tag disk reported in reference [3]
2 0)148 0)279 0)04 4143 * *

3 0)148 0)279 0)08 3705 * *

4 0)148 0)279 0)10 3313 * *

5 0)148 0)279 0)10 2904 * *

6 0)148 0)279 0)13 2995 * *

7 0)148 0)279 0)16 2625 * *

8 0)148 0)279 0)22 2348 * *

9 0)148 0)279 0)24 2076 * *

10 0)148 0)279 0)34 2036 * *

11 0)148 0)279 0)42 1712 * *

12 0)148 0)279 0)53 1712 * *

13 0)148 0)279 0)67 1712 * *

14 0)148 0)279 1)17 1414 * *

15 0)148 0)279 1)17 1804 * *

Data for the aluminum disks measured here
16 0)151 0)406 1)09 2400 * 12
17 0)151 0)483 1)09 2500 * 13
18 0)151 0)610 1)09 3800 * 23
19 0)151 0)775 1)09 4650 * 34
20 0)151 0)991 1)09 5600 * 52
21 0)151 1)245 1)09 7180 * 66
22 0)191 0)406 1)09 1900 * 9
23 0)191 0)495 1)09 1810 * 11
24 0)191 0)635 1)09 2100 * 14
25 0)191 0)787 1)09 2600 * 20
26 0)191 0)978 1)09 3350 * 30
27 0)191 1)245 1)09 4500 * 42
28 0)191 1)575 1)09 6000 * 62
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and the other data points for which the enclosure is signi"cant as data points 29}36 in
Table 3.

Renshaw et al. [3] report #utter measurements for oak tag and vellum disks taken in the
same vacuum chamber used by reference [2]. A radial clearance of one to "ve disk radii is
reported for these measurements. We assume that this clearance is su$cient to eliminate
any enclosure e!ects. The relative error in the oak tag measurements is reasonable (roughly
20%). However, the scatter in the vellum data is substantial (300%, or so). We therefore
assign a sampling of 14 oak tag data points to Table 2 and a sampling of 23 vellum data
points to Table 3. These data points were determined by scanning the plots shown in
reference [3]; as a result, these points have small errors associated with their measurement
o! the scanned plots.

In order to supplement these data points, a set of #utter speeds were measured by the
authors for 0)151 and 0)191m radius aluminum disks of thickness ranging from 0)406 to
1)575m. These disks were spun in air at atmospheric pressure at di!erent speeds using



TABLE 3

Suspect experimental -utter data for disks with �"0)3

R
�

H 	
�

�
�������

�
�������

Datum (m) (mm) (kg/m�) (rpm) n (Hz)

Data for the steel disk reported in reference [2]; enclosure e+ect signi,cant
29 0)178 0)775 0)0035 8718 3 & 4 *

30 0)178 0)775 0)010 5909 3 *

31 0)178 0)775 0)019 4766 3 *

32 0)178 0)775 0)025 4178 3 *

33 0)178 0)775 0)034 4052 3 *

34 0)178 0)775 0)069 3275 3 *

35 0)178 0)775 0)10 3080 3 *

36 0)178 0)775 0)14 2701 3 *

Data for the vellum disk reported in reference [3]; signi,cant scatter in data
37 0)148 0)0635 0)064 2995 * *

38 0)148 0)0635 0)089 2649 * *

39 0)148 0)0635 0)13 2421 * *

40 0)148 0)0635 0)094 1488 * *

41 0)148 0)0635 0)060 1427 * *

42 0)148 0)0635 0)12 1301 * *

43 0)148 0)0635 0)16 1628 * *

44 0)148 0)0635 0)23 1164 * *

45 0)148 0)0635 0)20 959 * *

46 0)148 0)0635 0)20 745 * *

47 0)148 0)0635 0)27 850 * *

48 0)148 0)0635 0)31 775 * *

49 0)148 0)0635 0)39 784 * *

50 0)148 0)0635 0)49 715 * *

51 0)148 0)0635 0)54 817 * *

52 0)148 0)0635 0)59 693 * *

53 0)148 0)0635 0)80 752 * *

54 0)148 0)0635 1)00 752 * *

55 0)148 0)0635 1)00 615 * *

56 0)148 0)0635 1)02 544 * *

57 0)148 0)0635 1)00 1342 * *

58 0)148 0)0635 0)67 1075 * *

59 0)148 0)0635 0)52 1262 * *
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a brushless DC motor. The transverse vibrations at a single, spatially "xed location were
measured using a Philtec photonic sensor with a sensitivity of 0)0001m/V. At each speed, 7 s
of data was acquired at 2048Hz. The rms deviation of this reading from its average value
determined the magnitude of transverse vibration and a power spectrum of the data
determined the vibration frequencies. Figure 2 shows a typical plot of transverse vibration
magnitude versus rotation speed for a 0)151m radius, 0)775mm thick disk. Initially, the
transverse vibration magnitude decreases with rotation speed due to the centripetal
#attening of the initial run out of the disk. Above #utter, however, the vibration magnitude
increases rapidly for small increases in rotation speed. The #utter speeds and frequencies of
these measurements are reported in Table 2 as data points 16}28.

The values of the dimensionless �, M, �, and the dimensionless #utter frequency
corresponding to the data in Tables 2 and 3 are given in Tables 4 and 5 respectively. In
Table 4, 0)0272)�)0)7111, 0)0811)M)0)3469, and 5)24�10��)�)1)57�10��.



Figure 2. Typical experimental results showing rms vibration amplitude versus rotation speed for a 0)151m
radius, 0)775mm thick, aluminum disk.
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8. DETERMINATION OF h(r, �)

The unknown parameter of our model, the boundary layer weighting function h(r, �), is
chosen to minimize the sum of squared, relative errors of the data in Table 4. Initially, we
attempted to make the boundary layer weighting function proportional to the Dirac
function, h (r, �)"c� (r!1). However, these results did not converge as N, the number of
trial functions, increased. Consequently, we then investigated polynomial functions as well
as exponential dependence on �. Numerical experiments indicated that the particular choice
of the polynomial was not crucial. (This is not surprising since it is weighted by u (r) which is
small except near the rim of the disk.) The "nal form selected was

h"!C��r	 (59)

with N"8. For the data in Table 4, the best values of C and � were determined using
Powell's method. This gives C"2)4�10� and �"0)25.

Table 6 compares the model's prediction with the data in Table 4 while Table 7 compares
the predictions for the data of Table 5. The average absolute value in the percentage error in
predicting � is 32% for the data of Table 4 and the maximum percentage error is 72%.
While these errors are large, they represent a substantial improvement over the predictions
of classical aeroelastic theory [3]. The predicted dimensionless #utter frequencies range
from 0)86 to 3)39. Where data is available, these overestimate the measured #utter



TABLE 4

Dimensionless -utter parameters for the data given in ¹able 2

Datum � M � �
�������

/�
�������

1 0)0326 0)1891 1)10E!02 0)58

2 0)0272 0)1861 5)24E!04 *

3 0)0471 0)1664 6)56E!04 *

4 0)0628 0)1488 8)20E!04 *

5 0)0628 0)1305 1)07E!03 *

6 0)0786 0)1345 1)00E!03 *

7 0)0984 0)1179 1)31E!03 *

8 0)1333 0)1055 1)63E!03 *

9 0)1475 0)0933 2)09E!03 *

10 0)2089 0)0914 2)17E!03 *

11 0)2559 0)0769 3)07E!03 *

12 0)3203 0)0769 3)07E!03 *

13 0)4100 0)0769 3)07E!03 *

14 0)7111 0)0635 4)50E!03 *

15 0)7111 0)0811 2)76E!03 *

16 0)1449 0)1099 1)20E!02 0)30
17 0)1220 0)1145 1)57E!02 0)31
18 0)0966 0)1740 1)08E!02 0)36
19 0)0760 0)2130 1)17E!02 0)44
20 0)0595 0)2565 1)31E!02 0)56
21 0)0473 0)3288 1)26E!02 0)55

22 0)1830 0)1099 7)56E!03 0)28
23 0)1501 0)1047 1)24E!02 0)36
24 0)1171 0)1214 1)51E!02 0)40
25 0)0944 0)1503 1)52E!02 0)46
26 0)0760 0)1937 1)41E!02 0)54
27 0)0597 0)2602 1)26E!02 0)56
28 0)0472 0)3469 1)14E!02 0)62
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frequencies by a factor of two or three. Measurements of the number of nodal diameters of
the #uttering mode are only available for the data of reference [2] (data points 1, and
29}36). These predictions are correct except for data point 30; however, the measured data
indicates a transition from n"3 to 4 for data point 29 which is similar to data point 30. The
errors in predicting � for the steel disk in the enclosure are substantially higher than all
other data points, being a factor of 2}5 too large. The errors for the vellum disk are within
the scatter of these points.

Figures 3 and 4 show plots of the model's predictions against the data of Tables 4 and
5 respectively. The graphs plotM against � for either a "xed value of �M� (corresponding to
a "xed disk geometry at varying 	

�
) or for a "xed value of �M��� (corresponding to a disk

of constant material, constant 	
�

but varying thicknesses and radii). In all cases, the
transition curve from stable to unstable vibration is composed of two segments. The "rst
segment is a curve, concave up, from small � and high M to large � and small M. The
second segment is concave down from large � to a constant � for very smallM. The value
of the constant � corresponds to the classical aeroelasticity result.

Figure 5 shows predicted #utter boundaries for a broad range of �M� values. This plot
can be used to estimate #utter speeds for di!erent disk designs for �"0)3.



TABLE 5

Dimensionless -utter parameters for the data given in ¹able 3

Datum � M �

29 0)0009 0)4710 1)77E!03
30 0)0026 0)3193 3)85E!03
31 0)0051 0)2575 5)91E!03
32 0)0067 0)2258 7)69E!03
33 0)0089 0)2189 8)18E!03
34 0)0180 0)1770 1)25E!02
35 0)0267 0)1664 1)42E!02
36 0)0370 0)1459 1)84E!02

37 0)1706 0)1345 2)93E!05
38 0)2364 0)1190 3)75E!05
39 0)3483 0)1087 4)49E!05
40 0)2514 0)0668 1)19E!04
41 0)1604 0)0641 1)29E!04
42 0)3275 0)0585 1)55E!04
43 0)4266 0)0731 9)94E!05
44 0)6041 0)0523 1)94E!04
45 0)5459 0)0431 2)86E!04
46 0)5224 0)0335 4)74E!04
47 0)7269 0)0382 3)64E!04
48 0)8188 0)0348 4)38E!04
49 1)0479 0)0352 4)28E!04
50 1)3119 0)0321 5)15E!04
51 1)4518 0)0367 3)94E!04
52 1)5716 0)0311 5)47E!04
53 2)1393 0)0338 4)65E!04
54 2)6782 0)0338 4)65E!04
55 2)6782 0)0276 6)97E!04
56 2)7259 0)0244 8)91E!04
57 2)6782 0)0603 1)46E!04
58 1)7779 0)0483 2)28E!04
59 1)3953 0)0567 1)65E!04
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9. DISCUSSION

9.1. MODELLING

The analytic model investigated here gives a reasonable, order of magnitude estimate of
the #utter speed of a disk rotating in an unbounded medium. The data used to generate the
model varies widely; as a result, the model's accuracy is only fair. The predicted trends are
correct for �, the #utter frequency, and the #utter mode. For smaller, less varied sets of data,
the model can be "ne-tuned substantially. For example, consider just the eight data points
29}36, for which our model gives the worst predictions. The simple model
h"!2)9�10�r	 gives results within 21% for all eight data points.

In our model, the coupled disk/#uid interaction for di!erent kinds of disks is accounted
for by the � dependence in h. We tried to produce a more robust model by altering the
analytically derived linear dependence on � and quadratic dependence on M shown in
equation (52), but these attempts did not produce better predictions. We also tried to
produce a more robust model by including a viscous dependence using the Reynolds



TABLE 6

Comparison of theoretical predictions and experimental data of ¹able 2

% error % error
Datum �

������
in � �

�������
in �

�������
n

1 0)0497 52 1)13 94 3
2 0)0395 45 3)39 * 5
3 0)0480 2 3)36 * 5
4 0)0588 !6 3)33 * 5
5 0)0754 20 3)27 * 5
6 0)0712 !9 3)28 * 5
7 0)0924 !6 2)49 * 4
8 0)1142 !14 2)45 * 4
9 0)1463 !1 2)4 * 4

10 0)1528 !27 2)39 * 4
11 0)2239 !12 2)28 * 4
12 0)2239 !30 2)28 * 4
13 0)2239 !45 2)28 * 4
14 0)3579 !50 1)52 * 3
15 0)1982 !72 2)31 * 4

16 0)1586 !9 1)07 257 3
17 0)1894 55 0)86 176 3
18 0)0581 !40 1)14 214 3
19 0)0408 !46 1)09 148 3
20 0)0307 !48 1)01 81 3
21 0)0181 !62 1)04 89 3

22 0)1248 !32 1)34 371 3
23 0)1796 20 1)05 188 3
24 0)1605 37 0)89 123 3
25 0)1049 11 0)89 93 3
26 0)0580 !24 0)95 77 3
27 0)0289 !52 1)04 86 3
28 0)0151 !68 1)11 79 3

Ave. 
error
 32 148
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number of the rim. This also failed to improve the predictions. Although circumstantial,
these results support the validity of the model and, in particular, the idea that aeroelastic
#utter is driven by a compressible boundary layer near the rim of the disk.

That being said, the analytic derivation of the model could be substantially improved.
The steady #ow is not irrotational; no-slip conditions are irrelevant in potential #ow yet
essential to this problem; the pressure is linearized about v

�
"0 even though the steady #uid

velocity is non-zero; and so on. As emphasized in the introduction, our goal here was
a predictive model at the expense of modelling "delity. The derivation presented here is
perhaps best viewed as setting the stage for more re"ned modelling by identifying a physical
mechanism driving aeroelastic #utter and demonstrating that such a mechanism can
capture the proper trends observed experimentally.

In contrast to the mechanism proposed here, references [5, 6] propose that #utter is
driven by rotating damping forces in the #uid. In addition, they develop an experimental
method for predicting #utter by estimating the rotation speed at which a vibration
frequency "rst becomes undamped. In our model, only the mass matrix of the underlying



TABLE 7

Comparison of theoretical predictions and experimental data of ¹able 3

% error

Datum �
������

in � �
�������

n

29 0)0056 509 2)43 4
30 0)0128 391 2)17 4
31 0)0209 308 1)43 3
32 0)0292 338 1)33 3
33 0)0318 258 1)3 3
34 0)0623 245 1)04 3
35 0)0793 197 0)94 3
36 0)1464 296 0)7 3

37 0)1395 !18 6)06 8
38 0)1697 !28 6)05 8
39 0)1967 !44 6)05 8
40 0)4563 81 5)16 7
41 0)4928 207 5)16 7
42 0)5862 79 5)14 7
43 0)3875 !9 5)17 7
44 0)7325 21 5)12 7
45 1)1131 104 5)06 7
46 1)8888 262 0 0
47 1)4893 105 5)01 7
48 1)902 132 4)2 6
49 1)844 76 4)2 6
50 1)8505 41 0 0
51 1)6512 14 4)22 6
52 1)8231 16 0 0
53 1)8968 !11 0 0
54 1)8968 !29 0 0
55 1)731 !35 0 0
56 1)6489 !40 0 0
57 0)5528 !79 5)15 7
58 0)8645 !51 5)09 7
59 0)6231 !55 5)13 7
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eigenvalue problem is altered by the #uid, and stable solutions have Im (�)"0, i.e., no
damping. These results are therefore at odds with those of references [5, 6].

Themost striking aspect of our model, perhaps, is the magnitude of the compressible #uid
corrections imposed on the #ow. Here, this correction is characterized by the transverse
velocity boundary condition (48) and the factor 1#M�h. For the data in Table 4, this
factor ranges from 1!25r	 to 1!944r	. In other words, the imposed transverse velocity
that accounts for the compressible boundary layer is 1803 out of phase and up to three
orders of magnitude larger than the actual velocity, at least at the rim of the disk. This
corresponds to a large, local change in pressure that is characteristic of shocks and other
compressible boundary layers.

9.2. INDUSTRIAL PREDICTIONS

The model described here gives us a &&back-of-the-envelope'' of whether or not aeroelastic
#utter is likely to occur in hard disk drive designs. Table 8 lists design parameters for



Figure 3. Comparison of the model predictions and experimental data shown in Table 3. Steel:
�M�"3)92�10��, ��, data, **, theory; oak tag: �M�"1)82�10�	, ���, data, - - - - -, theory; aluminum
with R

�
"0)151m; �M���"3)05�10�
, ��, data, ) } ) }, theory; aluminum with R

�
"0)191m:

�M���"3)05�10�
, X, data, ) } )}, theory.

TABLE 8

An historical sampling of hard disk drive designs comparing the relative signi,cance of critical
speed and -utter speed. All disks are aluminum with �"0)34

OD H � Fraction Fraction M at
Year (in) (mm) (rpm) of �

��	�	���
(%) of �

�������
(%) #utter

1953 24 0)64 360 60)4 34)9 0)10
1973 14 2)54 3600 51)8 44)9 0)43
1980 10 2)03 3600 33)1 29)0 0)48
1980 8 1 3600 43)0 35)5 0)31
1985 5)25 0)8 3600 23)1 19)6 0)37
1990 3)25 0)8 3600 8)9 7)9 0)57
1996 3)25 0)8 7200 17)8 15)9 0)57
2000 3)25 0)8 10000 24)7 22)0 0)57
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a number of prototypical disk drive designs produced during the years 1953}2000. Also
listed is the fraction of the "rst critical speed and the fraction of the aeroelastic #utter speed
at which these designs operated. (The "rst critical speed is the lowest speed at which
a vibration frequency of the disk vanishes when the disk is uncoupled to air; historically, this



Figure 4. Comparison of the model predictions and experimental data shown in Table 4. Steel:
�M�"3)92�10��, ��, data, **, theory; vellum: �M�"5)31�10�
, ��, data, - - - -, theory.
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speed has been a relevant design factor.) Until about 1990, both of these fractions decreased.
Since then, however, with the standard 3)25 in design, both fractions are increasing, with
current designs operating at about a quarter of the critical and #utter speeds. The rimMach
number required for #utter are substantial and would generally be considered within the
compressible range even without boundary layers.

Aeroelastic #utter per se will not be an important design driver anytime soon. However,
the mechanism that induces #utter is likely to induce unwanted aerodynamically driven
vibration of the disk even if the operation speed is well below the #utter speed of the disk.
Consequently, an understanding of boundary layer e!ect near the rim of the disk may be
crucial to the next generation of hard disk drives. In addition, enclosure design to reduce
such vibration may become industrially important. For example, we predict a #utter speed
of 45 000 rpm for an unenclosed 3)5 in disk drive with our model. Kim et al. [6]
experimentally estimated #utter speeds ranging from 35 000 to 75 000 rpm depending on the
enclosure. Such enclosure-induced variations in #utter speed are likely to become important
design drivers.

10. CONCLUSIONS

A simple mathematical model is presented for predicting the aeroelastic #utter of
a rotating disk in an unbounded #uid. This model is motivated by the solution of a classical



Figure 5. Theoretical #utter predictions for various values of �M� for �"0)3.
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problem, namely the oscillations of a rotating #uid being driven by a co-rotating disk. The
solution of this classical model is extended to include #exible disks. A simple model for
predicting aeroelastic #utter is proposed. Over a broad range of experimental parameters,
the model has the following attributes: (1) #utter speed predictions are within an order of
magnitude of experimental data; (2) #utter frequencies are a factor of 2}3 too large; (3)
#utter shapes (i.e., nodal diameters, n) are accurate.

The model can be used as a design tool to assess the in#uence of aeroelastic #utter on
potential rotating disk designs. More importantly, the results provide circumstantial
evidence for a compressible boundary layer near the rim of a rotating disk with the strength
to produce large pressure changes and, consequently, large transverse oscillations. Since
large oscillations are generally undesirable, understanding such a boundary layer is
essential to their reduction. This investigation sets the stage for more re"ned modelling
e!orts aimed at understanding this phenomenon.
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